skip to main content


Search for: All records

Creators/Authors contains: "Oyarzún, Grecco A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present Keck Cosmic Web Imager Lyαintegral field spectroscopy of the fields surrounding 14 damped Lyαabsorbers (DLAs) atz≈ 2. Of these 14 DLAs, nine have high metallicities ([M/H] > − 0.3), and four of those nine feature a CO-emitting galaxy at an impact parameter ≲30 kpc. Our search reaches median Lyαline flux sensitivities of ∼2 × 10−17erg s−1cm−2over apertures of ∼6 kpc and out to impact parameters of ∼50 kpc. We recover the Lyαflux of three known Lyα-emitting Hi-selected galaxies in our sample. In addition, we find two Lyαemitters at impact parameters of ≈50–70 kpc from the high-metallicity DLA atz≈ 1.96 toward QSO B0551-366. This field also contains a massive CO-emitting galaxy at an impact parameter of ≈15 kpc. Apart from the field with QSO B0551-366, we do not detect significant Lyαemission in any of the remaining eight high-metallicity DLA fields. Considering the depth of our observations and our ability to recover previously known Lyαemitters, we conclude that Hi-selected galaxies associated with high-metallicity DLAs atz≈ 2 are dusty and therefore might feature low Lyαescape fractions. Our results indicate that complementary approaches—using Lyα, CO, Hα, and [Cii] 158μm emission—are necessary to identify the wide range of galaxy types associated withz≈ 2 DLAs.

     
    more » « less
  2. ABSTRACT

    We compare stellar mass surface density, metallicity, age, and line-of-sight velocity dispersion profiles in massive ($M_*\ge 10^{10.5}\, \mathrm{M_\odot }$) present-day early-type galaxies (ETGs) from the MaNGA survey with simulated galaxies from the TNG100 simulation of the IllustrisTNG suite. We find an excellent agreement between the stellar mass surface density profiles of MaNGA and TNG100 ETGs, both in shape and normalization. Moreover, TNG100 reproduces the shapes of the profiles of stellar metallicity and age, as well as the normalization of velocity dispersion distributions of MaNGA ETGs. We generally also find good agreement when comparing the stellar profiles of central and satellite galaxies between MaNGA and TNG100. An exception is the velocity dispersion profiles of very massive ($M_*\gtrsim 10^{11.5}\, \mathrm{M_\odot }$) central galaxies, which, on average, are significantly higher in TNG100 than in MaNGA ($\approx 50\, \mathrm{km\, s^{-1}}$). We study the radial profiles of in situ and ex situ stars in TNG100 and discuss the extent to which each population contributes to the observed MaNGA profiles. Our analysis lends significant support to the idea that high-mass ($M_*\gtrsim 10^{11}\, \mathrm{M_\odot }$) ETGs in the present-day Universe are the result of a merger-driven evolution marked by major mergers that tend to homogenize the stellar populations of the progenitors in the merger remnant.

     
    more » « less